Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur.

نویسندگان

  • Brittany L Mortensen
  • Subodh Rathi
  • Walter J Chazin
  • Eric P Skaar
چکیده

Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc-Dependent Transcriptional Regulation in Paracoccus denitrificans

Zinc homeostasis is critical for bacterial survival and is mediated largely at the transcriptional level by the regulation of zinc uptake and efflux genes. Here we use RNA-seq to assess transcriptional changes as a result of zinc limitation in the denitrifying bacterium Paracoccus denitrificans. The results identify the differential expression of 147 genes, most of which were upregulated in zin...

متن کامل

Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn) and manganese (Mn2+, Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is ...

متن کامل

Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration

Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition met...

متن کامل

Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into ...

متن کامل

Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis.

Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 196 14  شماره 

صفحات  -

تاریخ انتشار 2014